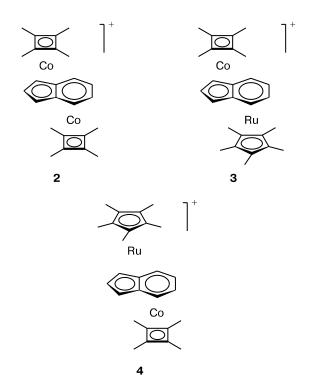
Synthesis of slipped μ-indenyl triple-decker complexes containing (C₄Me₄)Co and (C₅Me₅)Ru fragments

E. V. Mutseneck, P. V. Petrovskii, and A. R. Kudinov*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation.

Fax: +7 (095) 135 5085. E-mail: arkudinov@ineos.ac.ru

Slipped triple-decker complexes with the bridging indenyl ligand are represented only by the ruthenium complexes $[(C_5R_5)Ru(\mu,\eta^5:\eta^6-C_9H_7)Ru(C_5R_5')]^+,^{1,2}$ which were prepared by the electrophilic stacking reaction of the indenyl complexes $(C_5R_5)Ru(\eta^5-C_9H_7)$ with the $[(C_5R_5)Ru]^+$ cations. The synthesis of cobalt-containing analogs was made possible with the use of the acetonitrile complex $[Cb^*Co(MeCN)_3]^+$ $(Cb^*=C_4Me_4)$ described recently. The latter appears to be a convenient source of the Cb*Co fragment.


We prepared the η^5 -indenyl complex $Cb^*Co(\eta^5-C_9H_7)$ (1) by the reaction of $[Cb^*Co(MeCN)_3]^+$ with lithium indenide.* The electrophilic stacking reaction of 1 with $[Cb^*Co(MeCN)_3]^+$ yielded the cationic triple-decker dicobalt complex $[Cb^*Co(\mu,\eta^5:\eta^6-C_9H_7)CoCb^*]^+$ (2). The cobalt ruthenium cation $[Cb^*Co(\mu,\eta^5:\eta^6-C_9H_7)RuCp^*]^+$ (3) was synthesized by the reaction of 1 with the acetonitrile complex $[Cp^*Ru(MeCN)_3]^+$.

The $[Cp^*Ru(\mu,\eta^5:\eta^6-C_9H_7)CoCb^*]^+$ cation (4) isomeric to cation 3 was prepared by the analogous reaction of the ruthenium indenyl complex $Cp^*Ru(\eta^5-C_9H_7)$ with $[Cb^*Co(MeCN)_3]^+$. In complex 3, the cobalt atom is coordinated to the five-membered ring of the indenyl ligand, in contrast to 4, where it is coordinated to the sixmembered ring.

Triple-decker cations **2—4** were isolated as salts with the PF₆⁻ anion. These salts are air-stable for several hours. However, for prolonged storage, the salts should be kept under an inert atmosphere. The ¹H NMR spectra of cations **2—4** are similar to those of the diruthenium analogs $[(C_5R_5)Ru(\mu,\eta^5:\eta^6-C_9H_7)Ru(C_5R_5)]^+$. The structure of one of diruthenium complexes has been established by X-ray diffraction.²

All reactions were carried out under argon using anhydrous solvents. The reaction products were isolated in air. The starting compounds 1,* $Cp*Ru(\eta^5-C_9H_7)$,² [Cb*Co(MeCN)₃]PF₆,³ and [Cp*Ru(MeCN)₃]PF₆ ⁵ were prepared according to known procedures. The 1H NMR spectra were recorded on a Bruker AMX-400 instrument (400.13 MHz).

 $(\mu,\eta^5:\eta^6$ -Indenyl)bis[$(\eta$ -tetramethylcyclobutadiene)cobalt] hexafluorophosphate $(2 \cdot PF_6)$. A mixture of compound 1

(56.5 mg, 0.2 mmol) and [Cb*Co(MeCN)₃]PF₆ (69.6 mg, 0.16 mmol) in MeNO₂ (3 mL) was stirred for 24 h. The dark-red solution was concentrated to dryness. The residue was dissolved in CH₂Cl₂ (1 mL) and then diethyl ether (10 mL) was added. The dark-pink precipitate that formed was filtered off and twice reprecipitated with diethyl ether from CH₂Cl₂. The yield was 51.3 mg (54%). Found (%): C, 50.29; H, 5.18. C₂₅H₃₁Co₂F₆P. Calculated (%): C, 50.52; H, 5.26. ¹H NMR (CDCl₃), δ : 1.23 (s, 12 H, Cb*, η ⁵); 1.27 (s, 12 H, Cb*, η ⁶); 5.29 (d, 2 H, H(1), H(3), ${}^3J = 2.4$ Hz); 5.32 (t, 1 H, H(2), ${}^3J = 2.4$ Hz); 5.98 (m, 2 H, H(4), H(7)); 6.86 (m, 2 H, H(5), H(6)).**

 $(\mu, \eta^5: \eta^6-Indenyl)[(\eta-tetramethylcyclobutadiene)cobalt][(\eta-pentamethylcyclopentadienyl)ruthenium] hexafluorophosphate (3 · PF₆) was prepared analogously to 2 · PF₆ by the reaction of 1 (52.5 mg, 0.19 mmol) with [Cp*Ru(MeCN)₃]PF₆ (85.7 mg, 0.17 mmol) in CH₂Cl₂ (10 mL) as a red solid in a yield of$

^{*} The results of this study will be published elsewhere.

^{**} The H(4), H(7) and H(5), H(6) protons appear as multiplets characteristic of the A and B components of the AA'BB' spin system.

89.1 mg (79%). Found (%): C, 48.77; H, 5.17. $C_{27}H_{34}CoF_6PRu$. Calculated (%): C, 48.87; H, 5.16. ¹H NMR (CD_2Cl_2), δ : 1.27 (s, 12 H, Cb^* , η^5); 1.65 (s, 15 H, Cp^* , η^6); 5.04 (d, 2 H, H(1), H(3), $^3J = 2.4$ Hz); 5.37 (m, 3 H, H(2), H(4), H(7)); 6.27 (m, 2 H, H(5), H(6)).*

(μ,η⁵:η⁶-Indenyl)][(η-pentamethylcyclopentadienyl)ruthenium][(η-tetramethylcyclobutadiene)cobalt] hexafluorophosphate ($4 \cdot PF_6$) was prepared analogously to $2 \cdot PF_6$ by the reaction of Cp*Ru(η⁵-C₉H₇) (56.2 mg, 0.16 mmol) with [Cb*Co(MeCN)₃]PF₆ (60.9 mg, 0.14 mmol) in MeNO₂ (3 mL) as a yellow solid in a yield of 50.1 mg (54%). Found (%): C, 48.93; H, 5.19. C₂₇H₃₄CoF₆PRu. Calculated (%): C, 48.87; H, 5.16. ¹H NMR (CD₂Cl₂), δ: 1.30 (s, 12 H, Cb*, η⁶); 1.67 (s, 15 H, Cp*, η⁵); 4.86 (t, 1 H, H(2), ${}^3J = 2.4$ Hz); 5.00 (d, 2 H, H(1), H(3), ${}^3J = 2.4$ Hz); 5.80 (m, 2 H, H(4), H(7)); 6.72 (m, 2 H, H(5), H(6)).*

References

- A. R. Kudinov and M. I. Rybinskaya, *Metalloorg. Khim.*, 1988, 1, 1429 [*Organomet. Chem. USSR*, 1988, 1, 781 (Engl. Transl.)].
- A. R. Kudinov, P. V. Petrovskii, Yu. T. Struchkov, A. I. Yanovskii, and M. I. Rybinskaya, *J. Organomet. Chem.*, 1991, 421, 91.
- 3. M. V. Butovskii, U. Englert, A. A. Fil'chikov, G. E. Herberich, U. Koelle, and A. R. Kudinov, *Eur. J. Inorg. Chem.*, 2002, 2656.
- A. R. Kudinov, E. V. Mutseneck, and D. A. Loginov, *Coord. Chem. Rev.*, 2004, 248, 571.
- J. L. Schrenk, A. M. McNair, F. B. McCormick, and K. R. Mann, *Inorg. Chem.*, 1986, 25, 3501.

Received June 17, 2004; in revised form July 30, 2004

^{*} The H(4), H(7) and H(5), H(6) protons appear as multiplets characteristic of the A and B components of the AA'BB' spin system.